2

INTUITIONISTIC LOGIC

From the set-theoretic point of view intuitionistic propositional logic is a subset
of the classical one: it can be defined by the calculus which is obtained from CI
by discarding the law of the excluded middle (A10). It is Brouwer’s (1907, 1908)
criticism of this law that intuitionistic logic stems from. However, the philo-
sophical and mathematical justifications of these two logics are fundamentally
different.

2.1 Motivation

The law of the excluded middle allows proof of disjunctions ¢ V 1/ such that
neither ¢ nor 9 is provable. It is equivalent in Cl to the formula ——p — p
justifying proofs by reductio ad absurdum, which make it possible to prove the
existence of an object (having some given properties) without showing a way
of constructing it. Proofs of that sort are known as non-constructive. The aim
of intuitionistic logic is to single out and describe the laws of “constructive”
reasoning.

The main principle of intuitionism asserts that the truth of a mathematical
statement can be established only by producing a constructive proof of the state-
ment. So the intended meaning of the intuitionistic logical connectives is defined
in terms of proofs and constructions. The notions “proof” and “construction”
themselves are regarded as primary, and it is assumed that we understand what
a proof of an atomic proposition is.

A proof of a proposition ¢ A 1 consists of a proof of ¢ and a proof of 1.
A proof of ¢ V1) is given by presenting either a proof of ¢ or a proof of .
A proof of ¢ — 1 is a construction which, given a proof of ¢, returns a
proof of 1.

1 has no proof and a proof of = is a construction which, given a proof of
¢, would return a proof of 1.

This interpretation, given by Brouwer, Kolmogorov® (1932) and Heyting (1956),
can hardly be reckoned as a precise semantic definition and used for constructing
intuitionistic logic, as it was done for Cl. Nevertheless, it is not difficult to see
that the first nine axioms of classical calculus C!I are entirely acceptable from
the intuitionistic point of view, while the law of the excluded middle must be

3Kolmogorov treated formulas as schemes of solving (or posing) problems; for example,
¥ — v means the problem: given any solution to the problem ¢, find a solution to the problem

p.
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rejected (indeed, we cannot present now a proof of Goldbach’s conjecture or that
P = NP, etc., nor are we able to show that these statements do not hold).

Intuitionistic logic was first constructed in the form of calculus by Heyting
(1930). This calculus (an equivalent one, to be more exact) is obtained from Cl
by discarding axiom (A10).

As to the interpretation above, it can be made more precise in various ways.
Two of them—Kleene’s realizability interpretation and Medvedev’s finite prob-
lem interpretation—will be briefly discussed in Section 2.9. Another way, con-
nected with the explicit introduction of a new provability operator, will be con-
sidered in Section 3.9 of Chapter 3 dealing with modal logic.

More suitable for the practical use strict and philosophically significant defi-
nitions of semantics for intuitionistic logic were given by Beth (1956) and Kripke
(1965a) (see also Grzegorczyk, 1964). Their semantics does not exploit the no-
tions of proof and construction; instead, it explicitly expresses an epistemic fea-
ture of intuitionistic logic. We will give now some informal motivation of the
Kripke semantics; the corresponding formal definitions will be introduced in the
next section.

By accepting the fundamental semantic assumption of classical logic—each
proposition is either true or false—we completely abstract from the fact that
actually it may be a priori unknown whether this or that proposition is true
or false. We do not know now, for instance, if Goldbach’s conjecture is true, if
the equality P = NP holds, whether there are rational beings in the Archer
constellation, and so forth. But it is quite possible that we can know about this
in the future, acquiring new information on mathematics and the world around
us.

It is this epistemic aspect of the notion of truth that intuitionistic logic, as
opposed to the classical one, takes into account.

Let us imagine that our knowledge is developing discretely, nondeterministi-
cally passing from one state to another. When at some state of knowledge (or
information) x, we can say which facts are known at x and which are not es-
tablished yet. Besides, we know what states of information y are possible in the
future. Of course, this does not mean that we shall necessarily reach all these
possible states (for instance, we can imagine now not only a course of events un-
der which Goldbach’s conjecture will be proved, but also such a situation when
it will remain unproved or will be refuted). It is reasonable also to assume that
while passing to a new state y all the facts known at z will be preserved, and
some new facts will possibly be established.

It is natural to regard an atomic proposition, established at a state z, to be
true at z; it will remain true at all further possible states. A proposition which
is not true at x cannot be in general regarded as false, for it may become true
at one of the subsequent states.

The truth of compound propositions can be defined now as follows.

e p A1 is true at a state x if both ¢ and v are true at z.

e V1 is true at z if either ¢ or ¥ is true at z.
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o ¢ — 1) is true at a state z if, for every subsequent possible state y, in
particular x itself, ¢ is true at y only if 9 is true at y.

e | is true nowhere.

It follows from this definition that the negation —~p = ¢ — L is true at z if ¢
is true at no subsequent possible state. A proposition ¢ may be regarded to be
false at z if —¢ is true at z.

All axioms (A1)-(A9) (under every substitution of concrete propositions in-
stead of variables) turn out to be true at all conceivable states, which cannot be
said about (A10), i.e., po V (po — L). Indeed, if a proposition ¢ is not true at a
state z, but becomes true at a subsequent state y, then —¢ is not true at x and
so neither is ¢ V —p.

2.2 Kripke frames and models

As in Section 1.1, let us fix the propositional language £ with the connectives A,
V, — and the constant L. Starting from the informal interpretation above, we
give now a precise definition of an intuitionistic model for L.

An intuitionistic Kripke frame is a pair § = (W, R) consisting of a non-
empty set W and a partial order R on W, i.e., § is just a partially ordered set.
We remind the reader that a binary relation R on W is called a partial order if
the following three conditions? are satisfied for all z,y,z € W:

zRz (reflexivity),
zRy ANyRz — Rz (transitivity),
TRy ANyRr -z =y  (antisymmetry).

The elements of W are called the points of the frame § and TRy is read as “y is
accessible from z” or “x sees y”.

A valuation of L in an intuitionistic frame § = (W, R) is a map U associating
with each variable p € VarL some (possibly empty) subset B(p) C W such that,
for every z € U(p) and y € W, xRy implies y € V(p). Subsets of W satisfying
this condition are called upward closed. The set of all upward closed subsets of
W will be denoted by UpW. Thus, a valuation in § is a map U from VarZL into
UpW.

An intuitionistic Kripke model of the language L is a pair I = (F, V) where
§ is an intuitionistic frame and U a valuation in J.

In the terminology of the preceding section points in a frame § = (W, R) of
a model M = (F,V) represent states of information; if we are now at a state x
then in the sequel we may reach a state y such that Ry. An atomic proposition
p is regarded to be true at z if x € U(p). Since V(p) is upward closed, all atomic
propositions that are true at x remain true at all subsequent possible states.

4Here and below, to represent various properties of frames we use the language of classical
predicate logic with the predicates R and =.
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Let M = (F, V) be an intuitionistic Kripke model and z a point in the frame
F = (W, R). By induction on the construction of a formula ¢ we define a relation
(M, z) k= ¢, which is read as “p is true at z in M":

(M, z) =p iff z € Y(p);
M,z) EvAx iff (DM,z) =9 and (M, 2) | x5

M, z) =y vx iff (M,z) =y or (M z) =x;
(M, z) Ey — x iff for all y € W such that zRy,

(MM, y) k= o implies (M, y) = x;
(M, z) B~ L.

It follows from this definition that
(M,z) = iff for all y € W such that Ry, (9M,y) ¥ ¥.

If 9 is understood we write z = ¢ instead of (9, z) = ¢. The truth-set of ¢ in
M = (F, V), i.e., the set {x: z | ¢}, will be denoted by B(y).

Notice that an intuitionistic model 9 = (F, V) on the frame §F containing
only a single point, say z, is in essence the same as the classical model

MN={pe VarL: z € V(p)},

because (M, z) |= ¢ iff N k= ¢, for every formula ¢.

Proposition 2.1 For every intuitionistic Kripke model on a frame § = (W, R),
every formula ¢ and all points z,y € W, ifx |= ¢ and xRy then y |= .

Proof An easy induction on the construction of ¢ is left to the reader as an
exercise. Qa

In other words, Proposition 2.1 states that the set of points where ¢ is true
is upward closed. On the contrary, the set of points at which ¢ is not true may
be called downward closed, since x £ ¢ and yRx imply y £ ¢.

We say a formula ¢ is satisfied in a model 9 = (F, D) if x |= ¢ for some point
z in §. @ is true in M if = |= @ for every z in F; in this case we write M |= . If
¢ is not true in <M then we say that ¢ is refuted in M or M is a countermodel
for ¢, and write M (& .

A formula ¢ is satisfied in a frame § if ¢ is satisfied in some model based on
S. @ is true at a point z in § (notation: (F,z) k= @) if ¢ is true at z in every
model based on §. ¢ is called valid in a frame §, § = ¢ in symbols, if ¢ is true in
all models based on §. Otherwise we say that ¢ is refuted in § and write § ¥ .

If every formula in a set I" is true at a point z in a model 9, we write
M, z) =T or simply z = T. M =T and § = I" mean that all formulas in I" are
true in 9 and are valid in ¥, respectively.

Frames § = (W, R) and ® = (V, S) are said to be isomorphic if there is a 1-1
map f from W onto V such that xRy iff f(z)Sf(y), for all z,y € W. The map f
is called then an isomorphism of § onto &. Models 9t = (F, D) and N = (B, Y)
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are isomorphic if there is an isomorphism f of § onto & such that, for every
p € Varl, i(p) = f(B(p)), ie., for every z € W,

(M, z) = p iff (N, f(2)) = p.

In this case we say that f is an isomorphism of 9 onto MN.
The following two propositions are direct consequences of the given defini-
tions.

Proposition 2.2 If f is an isomorphism of a model 9 onto a model N then,
for every point x in M and every formula ¢,

(M, z) & ¢ iff (N, f(z)) E ¢

This gives us the ground not to distinguish between isomorphic models as
well as isomorphic frames.

Proposition 2.3 Suppose MM = (F, V) and N = (F,U) are models on a frame §
such that the valuations 8 and 4 coincide on the variables in some set Var C
VarL. Then for every point x in § and every formula ¢ with Varyp C Var,

(M, z) = ¢ iff (M, 2) e

Thus, if we want to construct a countermodel for a formula ¢ on a frame
3§, it suffices to define a valuation 20, refuting ¢, only on the variables in ¢; the
values of 2 on other variables have no effect on the truth of ¢ at points in §.

We shall often represent intuitionistic frames in the form of diagrams by de-
picting points as circles o and drawing an arrow from z to y if zRy. To avoid
awkwardness, we will not draw those arrows that can be uniquely reconstructed
by the properties of reflexivity and transitivity. For technical reasons it is some-
times impossible to connect z and y with an arrow; we then connect them with
a (broken) line, and the fact that xRy is reflected by placing y higher than z.
When representing models, we shall sometimes write some formulas near points:
on the left side of a point x we write those formulas that are true at z and those
that are not true are written on the right.

Example 2.4 Suppose § = (W, R) is the frame in which W = {a,b}, R =
{(a,a),(a,b),(b,b)} and let W(p) = {b} and V(q) = {a,b} for all ¢ € VarLl
different from p. Then the formula pV (p — L) is true at b and not true at a in
the model MM = (§, ). This situation is represented graphically in Fig. 2.1. Thus,
PV (p — 1) is satisfied as well as refuted in §. The formula ((p — 1) — L) - p
is also refuted in M, since a = (p — L) — L and a } p.

Example 2.5 The formula p — ((p — L) — 1) is valid in all intuitionistic
frames. Indeed, suppose otherwise. Then there is a model on a frame § = (W, R)
such that z |=p and z }& (p — 1) — L for some z € W, and so there isy € W
for which zRy and y |= p — L. By the definition of valuation, we must have
Y = p, whence y £ p — L, which is a contradiction.
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We define intuitionistic propositional logic Int, in the language £ as the set
of all £-formulas that are valid in all intuitionistic frames, i.e.,

Int; = {p € ForL: § = ¢ for all frames §}.

Usually we will drop the subscript £ and write simply Int.
Since the classical validity is nothing else but the validity in the single-point
intuitionistic frame, we obtain the inclusion

Int C CL
And since p V —p is in Cl but does not belong to Int, this inclusion is proper.

2.3 Truth-preserving operations

In comparison with classical models intuitionistic ones are much more complex
structures. So before proceeding to the study of Int let us develop some notions
and technical means for handling them. In this section we introduce three very
important operations on intuitionistic models and frames which preserve truth
and validity.

A frame & = (V,S) is called a subframe of a frame § = (W, R) (notation:
® C §)if VC W and S is the restriction of R to V (S = R[V, in symbols), i.e
S = RN V2. The subframe ® is a generated subframe of § (notation: & S F) if
V is an upward closed subset of W.

Example 2.6 Let § be the frame depicted in Fig. 2.2 (a). Then the frames
shown in Fig. 2.2 (a)-(g) are (isomorphic to) subframes of ¥, with (a), (d), (e)
and (f) being the only pairwise non-isomorphic generated subframes. —

If 8 = (V,S) is a generated subframe of § = (W,R) and V is the upward
closure of some set X C W, i.e., V is the minimal upward closed subset of W to
contain X, then we say that V and & are generated by the set X. Notice that
since R is reflexive and transitive,

V={zeW: Jye X yRz}.

If § is generated by a singleton {z} then ¥ is called rooted and z is called the root
(or the least point) of F. All frames in Fig. 2.2, except (d) and (g), are rooted.
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We introduce special notations for the operations of upward and downward
closure. Namely, if § = (W, R) is a frame and X C W then we let

XIR={z e W:3Jy € X yRzx},

X|R={z e W:3Jye X zRy}.

If ¥ is understood then we drop R and write simply XT and X|; we also write z7
and z| instead of {z}1 and {z}|, respectively. All the points in zT (z|) are called
successors (predecessors) of z; a successor (predecessor) y of z is proper if x # y.
A proper successor (predecessor) y of x is an immediate successor (respectively,
immediate predecessor) of z if tRzRy (yRzRx) implies z = z or z = y, for every
z € W. A point z is a final (or mazimal) point in § if 21 = {z}; z is the last (or
greatest) point in § if | = W. More generally, a point z € X C W is called final
(or mazimal) in X if no proper successor of z is in X.

Thus, 8 = (V,S) is a subframe of § = (W, R) generated by a set X if
V = X1R and S = RNV?; z is the root of & if V = z1S. Using arrows, instead
of xRy we can write now either y € 7 or x € y|.

A model M = (&, 41) is a submodel of a model M = (F,V) (notation: T C M)
if 8 = (V,S) is a subframe of §F = (W, R) and, for every p € VarL,

U(p) = B(p) NV,

In the case when & § F the model M is called a generated submodel of 9 (no-
tation: 91 S IMN).

The formation of generated submodels is the first truth-preserving operation
of the three mentioned above.

Theorem 2.7. (Generation) Suppose M = (B,4) is a generated submodel of
M = (F, V). Then for every formula ¢ and every point z in &,

(M, 2) E ¢ iff (M, z) = .

Proof The proof proceeds by induction on the construction of ¢. The basis of
Induction is obvious. Let ¢ =9 — x, § = (W, R) and 8 = (V, S). Then we have:

M,z) Eeiff Yy € 218 (M y) Ev — (M,y) = Xx)
iff Vy € z1R (M, y) = ¥ — (M, y) E x)
iff (M, z) = .
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Here the second equivalence is justified by the induction hypothesis and the fact
that 1S = z1R, for every point z € V.
The cases ¢ = ¥ A x and ¢ = 1 V x are trivial. Q

The generation theorem means that the truth-values of formulas at a point
z are completely determined by the truth-values of their variables at the points
in 2T and do not depend on other points in the model.

Corollary 2.8 If & S F then, for every formula ¢,

(i) (8,z) = ¢ iff (3,x) = ¢, for all points x in &;

(ii) §F E ¢ implies & = .
Proof (i) Suppose (&,z) [~ ¢. Then (N, z) £ ¢ for some model 9T = (B, ).
Define a valuation 0 on § by taking

6(p) = i(p) for all p € VarL.

Then M S M = (F, V) and so, by the generation theorem, (!M,z) [~ ¢. There-
fore, (¥,z) = ¢ implies (&, z) |= ¢. The converse implication is a direct conse-
quence of the generation theorem.

(ii) follows from (i). a

We draw two more simple consequences of the generation theorem.

Corollary 2.9 For every frame § and every formula ¢, the following conditions
are equivalent:

(i) 5 F o
(i) & o, for every 85 3;
(iii) & = ¢, for every rooted 8 § F.

Corollary 2.10 Int; = {¢ € ForL : ¥ = ¢ for all rooted frames §}.

Our second truth-preserving operation is defined in a slightly more compli-
cated way.

Suppose we have two frames § = (W, R) and & = (V,S). A map f from W
onto V is called a reduction of § to & if the following conditions hold for every
z,y e W:

(R1)  zRy implies f(z)Sf(y);
(R2)  f(x)Sf(y) implies 3z € W (zRz A f(z) = f(y)).
In this case we say also that f reduces § to & or & is an f-reduct (or simply a

reduct) of F or § is f-reducible (or simply reducible) to &. Such a map f is often
called a pseudo-epimorphism or just a p-morphism as well.

Proposition 2.11 A one-to-one reduction of § to & is an isomorphism between
g and 6.

Proof Exercise. a



